Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Infect Dis ; 23(1): 374, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20234767

ABSTRACT

BACKGROUND: University students commonly received COVID-19 vaccinations before returning to U.S. campuses in the Fall of 2021. Given likely immunologic variation among students based on differences in type of primary series and/or booster dose vaccine received, we conducted serologic investigations in September and December 2021 on a large university campus in Wisconsin to assess anti-SARS-CoV-2 antibody levels. METHODS: We collected blood samples, demographic information, and COVID-19 illness and vaccination history from a convenience sample of students. Sera were analyzed for both anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody levels using World Health Organization standardized binding antibody units per milliliter (BAU/mL). Levels were compared across categorical primary COVID-19 vaccine series received and binary COVID-19 mRNA booster status. The association between anti-S levels and time since most recent vaccination dose was estimated by mixed-effects linear regression. RESULTS: In total, 356 students participated, of whom 219 (61.5%) had received a primary vaccine series of Pfizer-BioNTech or Moderna mRNA vaccines and 85 (23.9%) had received vaccines from Sinovac or Sinopharm. Median anti-S levels were significantly higher for mRNA primary vaccine series recipients (2.90 and 2.86 log [BAU/mL], respectively), compared with those who received Sinopharm or Sinovac vaccines (1.63 and 1.95 log [BAU/mL], respectively). Sinopharm and Sinovac vaccine recipients were associated with a significantly faster anti-S decline over time, compared with mRNA vaccine recipients (P <.001). By December, 48/172 (27.9%) participants reported receiving an mRNA COVID-19 vaccine booster, which reduced the anti-S antibody discrepancies between primary series vaccine types. CONCLUSIONS: Our work supports the benefit of heterologous boosting against COVID-19. COVID-19 mRNA vaccine booster doses were associated with increases in anti-SARS-CoV-2 antibody levels; following an mRNA booster dose, students with both mRNA and non-mRNA primary series receipt were associated with comparable levels of anti-S IgG.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Wisconsin/epidemiology , Universities , Antibodies, Viral , RNA, Messenger
2.
Emerg Infect Dis ; 27(11): 2776-2785, 2021 11.
Article in English | MEDLINE | ID: covidwho-1444021

ABSTRACT

University settings have demonstrated potential for coronavirus disease (COVID-19) outbreaks; they combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin-Madison, Madison, Wisconsin, USA. During August-October 2020, a total of 3,485 students, including 856/6,162 students living in dormitories, tested positive. Case counts began rising during move-in week, August 25-31, 2020, then rose rapidly during September 1-11, 2020. The university initiated multiple prevention efforts, including quarantining 2 dormitories; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, in which the university is located, did not find evidence of transmission from a large cluster of cases in the 2 quarantined dorms during the outbreak. Coordinated implementation of prevention measures can reduce COVID-19 spread in university settings and may limit spillover to the surrounding community.


Subject(s)
COVID-19 , Universities , Disease Outbreaks , Humans , SARS-CoV-2 , Wisconsin/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL